Falconieri: Remote
Provisioning Service as a
Service

A new, modern, open source and cloud native
remote provisioning service gateway.

esis Matteo Valentini

AUGUST 4-6

Intro: Remote Provisioning Service
Theory

What is it a Remote Provisioning Service?

The scope of Remote Provisioning Service is to solve the problem of the first
time phone configuration.

® _Amygos in Matteo Valentini

A VolIP phone before his first configuration

Intro inn Matteo Valentini

What is it a Remote Provisioning Service?

Without a RPS the phone must rely on local mechanism for initial provisioning,
like:

e DHCP Option 66: for be effective you must have access to the DHCP
server
e UPNP: can be tricky to manage the IP multicast routing

® _Amygos in Matteo Valentini

What is it a Remote Provisioning Service?

Hi, i am mac, where is my
configuration?
Your configuration is in this
location.

Vendor
Remote
Provision
Service

Local or Remote
PBX server

inn Matteo Valentini

What can do a Remote Provisioning Service?

e Assign a configuration to a device even before is out of the box
e Massive configuration of multiple device via APIs

® _Amygos in Matteo Valentini

Why building a RPS gateway?

Vendors implementations

| SEE A SMALL e
APARTMENT... | | SEE YOU...

AND, AHOT JESUS THAT'S
OF XML-RPC Acg OF
ppy
: XML-RPC
APls

inn Matteo Valentini

Vendors implementations

e Not standard set of features between vendors
e Different APIs each vendors
e XML-RPC

® _Amygos in Matteo Valentini

The Leopard
project

The scope of the project
is refactoring the phone
provisioning component
of NethVoice, the
Nethesis PBX solution.

=]

IS A NET R4

inn Matteo Valentini

“If we want things to
stay as they are,
things will have to
change.”

The Leopard project goals

e Use most modern technologies

e Introduction of new provisioning mechanisms (like RPS)

e Support of a well defined set of selected phone vendors: SNOM, Gigaset,
Yealink, Fanvil

e Release most of the project's components as Open Source projects

inn Matteo Valentini

Tancredi
Falconieri

Tancredi: phone
provisioning engine
ideal for internet
deployments.

Falconieri: remote

provisioning gateway.

® _Amygos

n Matteo Valentini

The role of Falconieri

The role of Falconieri is to:

e Provide a unified HTTP rest interface to the vendors RPS service
e Store the credentials for access to the vendors RPS services

® _Amygos in Matteo Valentini

The vendors APIs

The semantic

For every vendor we want create an API that:

e Given a specific mac address, create a new configuration for that mac
address if the mac address is not already configured

e Given a specific mac address, override the previous configuration for that
mac address if the mac address was already configured

The vendors APIs inn Matteo Valentini

The ideal APl endpoint

PUT /providers/:provider/:mac

Path variables

e provider. Name of the remote provider.
e mac:. Mac address of the device

Body

A JSON object with the url of the configuration server.

The vendors APIs

inn Matteo Valentini

Vendors interface objects

Every vendor have implemented this objects in some way:

e MAC Address: MAC address of the phone
e Redirect Url: the url where the actual phone configuration is stored
e Group: A list of phone with the same configuration

The vendors APIs inn Matteo Valentini

The vendors
APIs

The Good, the Bad and the
Ugly

(Fanvil, Gigaset, SNOM,
Yealink)

The vendors APIs inn Matteo Valentini

The Good: SNOM

e Good documentation

o https://service.snom.com/display/wiki/XML-RPC+API
e Simple APIs

o 7/ APIs

e HTTPS endpoint

The vendors APIs inn Matteo Valentini

https://service.snom.com/display/wiki/XML-RPC+API

The Good: SNOM

Api calls for implementing Falconieri semantic:

1. redirect.registerPhone(mac, provisioningUrl)

The vendors APIs inn Matteo Valentini

The Bad: Gigaset

e Public documentation

o https://teamwork.gigaset.com/gigawiki/display/GPPPO/Gigaset+Redirect+server

o Better documentation in the service portal (after obtained a user/password from Gigaset)
e Simple APIs

o 7APIs

e HTTPS endpoint

The vendors APIs inn Matteo Valentini

https://teamwork.gigaset.com/gigawiki/display/GPPPO/Gigaset+Redirect+server

The Bad: Gigaset

Why the Bad?

e Require a CRC code within the mac
e The CRC code in printed in the phone label (with no public formula for

calcualtion)
e The mandatory CRC code make almost impossible an automated device

discovery and configuration.

But maybe you can have the CRC code disable for your account if you ask.

inn Matteo Valentini

The vendors APIs

The Bad: Gigaset

Api calls for implementing Falconieri semantic:

1. autoprov.deregisterDevice(macID)
o macID:"<MAC address> - <CRC code>"
o We don't care about success or not!

2. autoprov.registerDevice(macID, provisioningUrl, Provider)
o Provider: in this case can be anything

The vendors APIs inn Matteo Valentini

The Ugly

e Yealink
e Fanvil

The vendors APIs inn Matteo Valentini

The Ugly: Yealink

e Public documentation
o http://support.yealink.com/documentFront/forwardToDocumentDetailPage?documentid=

257
e Too many APIs
o 16 APIs

e HTTPS endpoint

The vendors APIs inn Matteo Valentini

http://support.yealink.com/documentFront/forwardToDocumentDetailPage?documentId=257
http://support.yealink.com/documentFront/forwardToDocumentDetailPage?documentId=257

The Ugly: Yealink

Why in the ugly?

e The APIs are overloaded and redundant.
e Very bad APl design

The vendors APIs inn Matteo Valentini

The Ugly: Yealink

Api calls for implementing Falconieri semantic:

1. redirect.registerDeviceWithUniqueUrl(mac, serverName,
provisioningUrl, isOverride)
o serverName: in this case can be anything, provisioningUrl take the precedence
o 1isOverride: if 1 override the previous configuration

The vendors APIs inn Matteo Valentini

The Ugly: Fanvil

Fanvil:

e No public documentation!

e Too many APIs!
o 19 APIs!

e HTTP endpoint...

The vendors APIs inn Matteo Valentini

The Ugly: Fanvil

Why the Ugly?

e No HTTPS, require a double hash of the password for the authentication
(md5(md5(password)))!
e Too many steps to implement the simple Falconieri semantic.

The vendors APIs inn Matteo Valentini

The Ugly: Fanvil

1. redirect.addServer(serverName, provisioningUrl)
o The serverName and provisioningUrl actually are the same
o Don't care if the Server already exist

2. redirect.deRegisterDevice(mac)
o Don't care about the success.

3. redirect.registerDevice(mac, serverName)

The vendors APIs

inn Matteo Valentini

The Ugly: Fanvil / take 2

1. redirect.addServer(serverName, provisioningUrl)

o Tl N I i <ioningUr] I "
o The serverName is the MAC Address
o Don't care if the Server already exist

2. redirect.deRegisterDevice(mac)
o Don't care about the success.

3. redirect.registerDevice(mac, serverName)

The redirect URL exceeds the maximum length of ServerName

The vendors APIs

inn Matteo Valentini

The Ugly: Fanvil / take 3

1. redirect.deleteServer(mac)
o Don't care about the success.
2. redirect.addServer(serverName, provisioningUrl)

o T N | cioninel I |
o The serverName is the MAC Address

o -DenteareiftheServeralready-exist
3. redirect.deRegisterDevice(mac)
o Don't care about the success.

4. redirect.registerDevice(mac, serverName)

A server can't be overwritten, so we have to delete it first.

The vendors APIs

inn Matteo Valentini

The Ugly: Fanvil / take 4

1. redirect.deleteServer(mac)
o Don't care about the success.

3. redirect.deRegisterDevice(mac)
o Don't care about the success.

4. redirect.registerDevice(mac, serverName)

We can use redirect.addServer()... @

The vendors APIs

inn Matteo Valentini

The Ugly: Fanvil / take 4

redirect.addServer() don't let you to configure some aspect of the groups,
like:

e Priority of the configurations source, Fanvi defaults:

1. DHCP
2. UPNP
3. RPS

e Force the phone to apply the configuration after the reboot

We have to use redirect.addMaterialServer()...

The vendors APIs inn Matteo Valentini

The Ugly: Fanvil / take 4

3.10 redirect. addMaterialServer

The vendors APIs

You can add a global configuration server which is used to register devices to

3.10.1 XMLRPC signature

redirect.addMaterialServer(array)

3.10.2 Parameter:

array: ['cfgName=Test', 'cfgApUsername ="', 'cfgApPassword =", ‘cfgApKey =",
‘cfgApKeyGen=', 'cfgApSave=0', 'cfgDhcpOpt=66',
'cfgPnpEnable =0', 'cfgPnpSrv =224.0.1.75', 'cfgPnpPort=5060", 'cfgPnpProt=0',
‘cfgPnpinterval =1, 'cfgPfSrv=', 'cfgPfName="',
'cfgPfProt=1', 'cfgPfinterval=1', "cfgPfMode=0", 'cfgTrEnable=0', ‘cfgTrType=1',
'cfgTrAcsSrv=0.0.0.0', 'cfgTrAcsUser=admin’, 'cfgTrAcsPw=admin’,'cfgTrTIsVersion=0',
‘cfgTrAutoLogin=0', 'cfgTrPeriod=3600', 'cfgStunEnable=0', 'cfgStunSrvAddr=0.0.0.0'",
'cfgStunSrvPort=3478', 'cfgStunLocPort=30000')

Note: all configurations are not nessary except for cfgName.

® _Amygos

Matteo Valentini

The Ugly: Fanvil / take 4

1. redirect.deleteServer(mac)
o Don't care about the success.

2. redirect.addMaterialServer([Array])

o Array:

o cfgName=mac

cfgPfMode=1 (Apply the configuration after reboot)
cfgDhcpOpt=false (Disable the DHCP provisioning)
cfgPnpEnable=false (Disable the PnP provisioning)
cfgPfProt=[1,2,4,5],cfgPfSrv=domain, cfgPfName=config path (The redirect
URL)

3. redirect.deRegisterDevice(mac)
o Don't care about the success.

4. redirect.registerDevice(mac, serverName)

o O O O

The vendors APIs ® _Amygos in Matteo Valentini

Falconieri

Falconieri characteristics

Open source (AGPL v3)

Single GoLang binary

Easily deployment with provided ansible role.
Created with “12 factor app” in mind

Stateless

Easily vertically and horizontally scalable

Falconieri

® _Amygos

inn Matteo Valentini

APIs

PUT /providers/:provider/:mac
Path variables

e provider: Name of the remote provider.
e mac: Mac address of the device, represented in the EUI-48 IEEE RA

Query parameters

e crc: mac address CRC code, only valid with Gigaset provider.
Body
A JSON object with the url field:

e url: URL of configuration server.

Falconieri

inn Matteo Valentini

Usage
Usage of ./falconieri:
-c string

Path to configuration file (default "/opt/falconieri/conf.json™)

Falconieri ® _Amygos in. Matteo Valentini

Configurations

Falconieri can be configured in two way:

e JSON file
e Environment Variables

The configuration passed via environment variables take the precedence.

Falconieri ® _Amygos in. Matteo Valentini

Falconieri JSON configuration

{
"providers": {
"snom": {
"user":"user",
"password": "password",
"rpc_url":

"https://secure-provisioning.snom.com:8083/xmlrpc/",
"disable": false

Falconieri ® _Amygos in. Matteo Valentini

Falconieri TODOs

Client authentication

Configuration of a list of devices

More deployment strategy: RPM, DEB, Docker, HELM ecc..
Deletion APIS?

Every Pull Request, enhancement, critique are very welcome!

https://github.com/nethesis/falconieri

Falconieri

inn Matteo Valentini

https://github.com/nethesis/falconieri

Tancredi

An IP phone provisioning engine

e Falconieri help the phone to find the configuration
e Tancredi build the actual phone configuration

https://nethesis.github.io/tancredi/

Falconieri inn Matteo Valentini

https://nethesis.github.io/tancredi/

Some statistics

Provides availability

Statistics over the last 90 days (updated on 06/08/2020)

Yealink ~99.7%
SNOM ~99.6%
Fanvil ~99.3%

Gigaset ~95.0%

Obtained by configure a MAC address every 2 minutes and checks the
operation result.

inn Matteo Valentini

Falconieri Nethesis' installation

The Leopard project was released as Private Beta on 26/03/2020 and released
as General availability on 06/07/2020.

Unique Registered Phones

Private Beta 537

General Availability 977

Updated on 06/08/2020

inn Matteo Valentini

Thanks for listening!
Questions?

Matteo Valentini

Developer at Nethesis

@ matteo.valentini@nethesis.it

https://github.com/Amygos/
https://twitter.com/_Amygos
mailto:matteo.valentini@nethesis.it
http://www.linkedin.com/in/matteo-valentini

